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STABILITY OF STRUCTURAL MEMBERS UNDER AXIAL LOAD

By Eugene E. Lundquist
SUMMARY

The principles of the Oross method of moment dlstri-
bution are used to check the stability of structural mem=
bers under axial load. A brief theoretical treatment of
the subjoct, together with an illustrative problem, is in-
cluded as well as a discussion of the reduced modulus at
high stresses and a set of tables to aid in the solutlon

of practical problems. - - -

INTRODUCGTION

Ono of the problems in the design of structures is to
make cortain that the compression members are stable un-
der the lozsds to be carried. For example, it is assumed
that the usual column formulas give tho crifical stress &t
which a compression member becomes unstable in bending.

In order to use these formulas, however, the value of the
restraint coefficient ¢ must be known.

For a structure built witih the members joined to each
other by frictionless pins at each end, ¢ = 1. TFor a’
structure bullt with the members continuous at the Jjoints,
however, the valuc of & for any compression member is de~
pendent upon the size of all members lun the struecture and
the axial loads in them. The design of the compressdion
members for a structure continuous at the jointe is there-
fore a problem in triasl-and-error calculation. The pro-
cedure rocommended for desigh is, first, to proportion the
compression members on the basis of assumed restraint co- -
efficients and, second, to check the stability of the sys—
tom of mombdrs by a simple calculation. If the system of
mombers is found to be unstable, new values of the re-
straint coefficient must be assumcd, new sizes for the
menbers selectod, and another check of the stability made.
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The suggestions and comment 6f Dr. William R. Osgood
of the Fatlonal Bureau of Standards on the subject mattor
of this report are greatly appreciated, particularly his
suggestliong regarding the evaluation of the effective
modulus at stresses above the elastlc range.

DEFINITIONS AND SYMBOLS

The following definitiong of stiffness and carry-over
factor narallel those given in referenccs 1l and 2 with
sore changes in wording:

Stiffnegg.- If a member is on unyielding supports at
each end, the moment at one end necessary to produce a
rotation of 1/4 radian of that ead is called the "gtiff-
nessg." The stiffness of a menber will depend upon the
anount of restraint at the far end. In the derivation of
the criterion for stability, three types of restraint at
the far end are considered. The symbols used to designate
the stiffness for the different types of restraint arec

S, far end fixed.

S!', far end elastically restrained.
S", far end pinned.

Carry—-over factor.- If a member is on unyielding sup-
vorts at each end and a moment is applied at the near ond,
the ratio of the noment developed at the far end to the
moment applied at the near end is called the "carry-ovor
factor." As in the casc of—stiffnéss, the carry-over fac-
tor will depond upon the-degree of .restraint at the far
end of the member. The symbols used to designate the
carry—over factor for the different types of restraint
considered in this report are .

C, far end fixecd.
6!, far end elastically .restrasinsed.

¢% = 0, far end pinncd. e -



N.A.C.A. Technical Note No: 617 ) 3

The stiffness of a member computed according to the
foregoing definition is 1/4 that computed according to the
definition given in references 1 and 2. In the Cross
method the relative stiffness of the members is of inmpor-
tance and not the absolute value. The foregoing defini-
tion was selscted so thet the stiffness of a member of
constant cross section with no axial load and fixed at Ehe
far end would be EI/L instead of 4EI/L. -

Sign convention.- The sign convention used in this
report is the same ns that used by James in reference 2.

A clockwise moment ncting on the end of =~ member 1s posi-
tive. A counterclockwise moment acting on o joint is pos=—
itive. An external noment applied at a joint is consld—
ered to act on the joint.

Symbols.-
%, sunnation.
E, nmnodulus of elasticity.
E, effective modulus aof elasticitf.

I, mnoment of inertia of cross section about a
centroidal axis normal to the plane of bendinge

L, length of mnenber.
P, axial load (absolute value).
A, area of cross section.

c, restraint coefficient in the usual column for—
nula.

, Tradius of gyration
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Effective values of a and B are. abtained by substitu-
tion of (L/j)eff for L/J.

CRITERION FOR STABILITY

The joints of the structure are assumed to be held
rigidly in space but are free to rotate under the elagstic
restraint of the interconnecting membere. Thils assump-
tion iIs alsoc basic in the Cross nethod of nonment distri~
bution (reference 1),

o
ar’
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The rethod used to check the stability of the struc—
ture is based upon the principles of moment distridbution.
In this nethod either of two criterions may bBe used.

Stiffness criterion for stability.- From a structure
of many nembers consider the section comprising one Jjoint

shown in figure 1., Apply a unit external moment a% joint
.b L] . ’

C2

Q§§7 . 41, external moment
cy B .

Figure 1,

By the Cross method, the moment of -1 added to balance
Joint b is divided betweea members be in proportion to
thelr stiffnesses. Because there are other members beyond
Joints ¢, the far end of members bec will be elastical~
ly restraoined as indicated in figure 1 by coiled springs
at ¢3, ¢z, and ez. It is possible, theoreftically, to cal-
culete the restraint at joints ¢ and the stiffness of
menbers bec when they are elastically restrained at their
far ends. Thus, if the stiffnesses of members bec are
determined with the far ends ¢ elastically restrained,
the moment of =1 added to balance joint b is distributed



6 NeA,C.A. Technical Note No. 617

S’bsl The moments carried over to the
" TS to member far ends of members bec are
: be be,
St St o!
be
- =5 to member - b;;‘ Ecl to far end of
ZStye beg *~ "be member be,
etc, S'peaC e
- -2, 2 to far end of
LS8 Tye member Dbcg
stc.

Tne moments carried over to the far ends of members be
will be absorbed by all the members beyond jolnts c.
Thus, the moment at each end of every member in the struc~
ture will be some quantity divided by 28'y,.

Before the structure is loaded, the stiffness of each
member of the structure is positive (no axial load in the
members) making IS'y,, positive, As the structure is

loaded, the effects of axlal tension and compression will
cause the stiffness of some members tv increase and the
gstiffness of other members to decrease. For stability,
the moment at each end of every member must be finite.
Therefore, the stiffness criterion for stability is

T Sty, >0 . (1)

It is desirable to emphasize that, if the stiffness
criterion for stability is satisfied, not only ig the sta—
bility of members be in figure 1 checked but the stabil~
ity of every member in the structure is proved.

The condltion of neutral stability gives the criticel
buckling load for the structure and is obtained by settling
the stiffness stability factor XS8!y, equal to zero, or

T8ty =0 . (2)

Series criterion for stnbillity.~ From g structure of
many members conrnsider the sectlion comprising two joints
shown 1n figure 2. Apply a unit external moment at joint
b. By the Cross method, the moment of <1 added to balance
joint b 1ig divided between member be and members ba
in proportion to their stiffnoesses: Because there are
other members to the left of joints a, the leoft end of
each nmember ba will be elastically restrained as indi-
cated in figure 2 by a coiled spring at a,, az, and azs
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a1

\3+1 , external moment

dg
& -
g :
8.3 d_s
ay . 31
a3 . 5
o b c 43
A\ '
_ zsba _ Spe -
Sbc+zsl‘)a sbc+ Esfaa
_ Sug o _ Sbe Cbe
SbetZSha SbctEShe, :
i
She Cbe Se¢h Spe Coe 8.4 )
SpctEShy Scb+ZSca!SvctZShe ScvtEScq
Sbe Cbe Scb Ceb Spe Obe  EScq C’llcd
’ i
SpetShe ScptESea SpetiSpa ScvtISca

Figure 2
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The stiffness of span ©be 1is calculated on the assumption
that  joint ¢ 1s fixed. Thus, if- Spe 1is the stiffness

of member be fixed at ¢ and ZS'ba is the sum of the

stiffnessesg of members ba clastically restrained at—
joints a, the moment of =1 added to balance tho external
moment of +1 at joint b is distridbuted:

S'b'c : S Pl
+ Zsfba

Sbc

to memaber e, and
1
zSs ba

—

Spe + TSy,

to members Da. These moments, together with the moments
carried over to Joint ¢ and Jjointe a, are set down in
the table of figure 2. I - o

Because the stiffness and carty-over factor for mom-
bers ba take proper account of the elastic restraint at
joints =a, the moments carried over te joints a aroc ab-
sorbed by those portions of the structure to the left of
these Joints. Thus, %there is no unbalanced nmoment at any
joint a.

It was assumed that joint ¢ was fixed when in reali-
ty 1t was elastically restroined. The monent

Sve Sbe ..
She * 28 Tpa

—

carriod over to this joint has therefore caused it—to be

out of balance. Accordingly, joirnt ¢ 1is balanced and

the proper moments are. carried over to joint b and jJoints
d. * (Sece table of fig. 2.) Because the stiffness and cerry-
over factor for members cd take proper account of the
elesgtic restraint at Jointg d, the moments carried over

to joints d aré absorbed by those mortions of the struc—
ture to the right of these Joints. ~Hence, the only un-
balanced joint is b and the unbalanced moment at this
Jjoint 1is r where . oo .

Sbc Cbc, Spb Gcb ;_ o (
Spe t ZS'ba Scp + ES8'.4

o~ |
~

Iy
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Joint b was the starting polnt with an unbalanced _
mornent of unity. Therefore, if the present unbalanced
monent of r at joint b is distributed in the manner
described for the initial unbalanced moment of unity, an-—
other get of entries for the table of figure 2 will be ob-—
tained that are exactly r +times those already made. It
will then be found that the unbalanced noment at joint D

is r 2 Distribution of this unbalanced moment will give
a third set of entries in the table of figure 2 that ars

r2 times the first set. Thus the nth set of entries in

the table of figure 2 will be r™~"* +times the first set-
of entries.

According to the Cross method, the moment at the end
of any member is obtained by the addition of the entries
in the corresponding column of the table of figure 2. For
any menber, this moment is some quantity times the infi-
nite series :

L+ 72+ 22+ 23+ , o 4 0 W

For stability, the moment at the end of each member nust
‘be finite. Thus, for stability, the sunm of the infinite
series nmust be finite, This condition is satisfied when
the value of r lies between ~1 and +1.

It will now be provedthat = cannot have a value be-
tween -1 and O without first having a value greater than
+1. The product of stiffness and carry-~over factor for
any nenber is positive for any condition of -restraint at
the far end. Therefore r can be negative only if the
denominater on the right side of .equation (3) is negative.
Before the structure is loaded, the stiffnmess of each neh—_
ber of the structure isg posltlve (no axial load in the
menbers), naking the denominator positive. As the struc—
ture is loaded, the effects of axial tension and conpres-
sion cause the stiffness of some members to increase and
the stiffness of other members to decrease. Thus, as the
load on the structure is increased, the denominator on the

right side of equation (3) cannot be negative wvithout pass—’

ing through zero. When ‘the denominator is zero, r 4is in-
finite, which means that the structure is unstable. There-
fore, the criterion for stability is

0O<r< 1 _ (4)

If the series criterion for stability is satisfied,
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not only is the stability of member ©be in figure 2
checked but the stability of every member in the structure
is proveds If the cross section and axianl load vary along
the length of any menmber, the effect of these variations
isg includoed in the evaluation of the stiffnoss and carry-
over factor for that nember regardless of which criterion
for stability is used. If degired, the effwct of shear
can also be included. '

The condition of neutral stability gives the critical
buckling load for the structure and is obtained by setting
the series stability factor =r equal to unity, or

S. ¢ S . ©
r = be b?_ _ chb c? -1 (5)
Spe + T8ty Sep * E8'cg

CARRY-OVER FACTOR AND STIFFNESS

In order to calculate the critical duckling load in
actuel prodblens, it-1is necessary ko have sultable expres—
sions for the stiffmess and carry-over factor. Before
these expressions are sumnarigzed, however, equations will
firgt be derived for the carry-over factor and stiffness
of a menber elastically restrained at its far end.

Congider the member 1j shown in figure 3, simply
supported at 1 and elastically restrained at J by mon-
bers Jl. The membors jk are alsc elastically rogtrained
at their for ends k. Apply an external momont ~M at .
support i. The moment of +M added to balance this Joint
is all distribubed to member ij. On the assumption that
joint J  is fixed, the moment carried over to the for end
J is. HCj4. The moment ~MC;s added to balance Jjoint J

is then distributed between menber - ji and nembers Jjk

in proportion to their stiffnesgses a2s shown in the table

of figure 3% ' _ _
S"ji

-MC

to member Jji, and
MG L
~MCy 5
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-
-M
external i

moment

kg
kq
ko
M
Mcij
] 1
SJl zsjk
RS st +X51 Moy &, +Ts! )
ji Jk ji jk
st ¢!
‘Mcig __Jk k
1" + 4
S'i Zsjk

Figure 3
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to members Jjk. Because the stiffness S"ji of span Jji

takes proper account of the pin end at i, no moment isg
carried over to i. The stiffness and carry-over factor
for members jk teke proper account of the elastic re-
straint at joints k. Thersfore the moments carried over
to joints Xk will be absorbed by the structure to the
right of these joints and the moment distridbution analysis
ls complete so far as moments in member 1j are concerned.
Thus the noments at the ends of~meéember 1iJ are:

At end i, M

At end j, MOy 5 =

By definition, the carry-over factor Ctsyy for member 1
elastically restrained at j is the ratio of the moment

t. . St . t, .
-S]_J : : SiJciJ
X ) External
External moment
moment
i J
Sty Stiy Clyy

Figure 4

1
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at end J to the moment at end i, or

ot Zs'jk

= Cy (6)
1
J i iy + ISty

In order to derive an equation for the stiffness
S! ij of member 1ij elastically restrained at the far end

J, assune that ~M (fig. 3) has the wvalue -S'35+ Then

menber 1 will have the end moments shown in the table

of figure 4 and the tangent at i1 will have been rotated
through 1/4 radian. Now consider a duplicate of member 1J
pinned at each end (fig. 5). Apply an external nmoment N
"S"ij at 1. The noment of +S"ij added to balance this

joint is distributed to member ij. If the far end J 1is
assuned to be pinned, the tangent at 1 will have been ro=—
tated through 1/4 radian. At this stage apply an external
nonent of “S'ij G'ij at j. The-moment of +8'33 Ctsij

Vi
-8 i 3 ~5'43 C'yj
External External
momen & moment
1 J

S"s 5 5% %45

Slij Ctijcji

Figure 5.
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added to balance this joint i1s distridbuted to memdber Jil.
On the assumption that the far end 1 1is fixed, the monent
carried over to Jjoint 1 1is +Sli'j c'ij Gji' In thig con-
dition the moment at J and the rotation of the tangent
at 1 are the same for the original member 1ij (fig. 4)
and the duplicate member .1ij (fig. 5). It therofore folw
lows that the momenty at 1 in the original and duplicate
nenber nust alse be equal. Therefors

H = " H t
Sty = 815 7 8%y Clyy Oy
from which . . o . L
SH, .
1
Sty = J S e = (7)

1~ Gg4 C'yj

Substitution of .the value of Cl'jj as given by cquation
(6) gives for the stiffness of a nembor 1J elastically
restrained at~the far end J by other members Jjk, also
elastically restralned at their far ends,

S"i'

3 .
St.: = : s . 8)
- 1 c c 25 Lk - f
Ji lJ S"ji +_Es!jk
Tor member ij, the limiting values of the carry-

over factor and stiffness given by equations (6) and (8),
respectively, are obtaiurd as follows. TWhen the far end J
is pinned, there is no elastic restraint at j and ISTyp=
0. TFor this limiting condition, the carry-over factor
C'ij = C"ij = 0 and the stiffness. S'ij = S"j--j. When the
far end j 1is fixed, there is complete restraint at J
and ZS'jk = ®, For this limiting condition, the carry-
over factor OC'ijj = C3j; end the stiffness S'yy = S;j
where . -
S"i'
S.s = — - . (9)

FJ 1 = Cyy Cyy

Up to this noint, all the equations in this report on
stability are general. In nearly all cases encountered in
practice, however, the cross section and axlal load do not
vary along the length of each member. TFa this specilal case,
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15
Gij = Gji' S"ij = s"ji{ .Sij = Sji' and the carry=over
factor of any member ij, fixed at the far end, is (see
reference 2)

(e Y
ij
Cij = 2515 . ' (19)
also, the stiffness df any such member ij isg:
Far end J pinned (see reference 2)
S"ij . BL [ s ] (11)
L 4Bij
For end J elastically restrained by members Jjk,
sv, .
i
't . = 2
¥ TSt (12)
1 - @2 Jk
Far end J fixed,
s
i
Si3 = ——— g . C. o (13)
J‘ l - G s =
ij -
.
4g, .
= EI 1d 5 . (14)
S - (D)
#P1

When the cross section and axial load do not wvary
throughout the length of each member, the series stability
factor 2s given by equation (3) becomes (sce fig. 2)

2
' : <Sbc'cbc)
r =

1 TSt : - (15)
(Sbc + XS ba) (Sbc + s cd)

The values of the quantities that appear in this expres-

sion arc obtained by the use of equestions (10) through
(14). It is more convenient, however,

. to tabulate certein
of thaese guantities as has been done 'in tables I and II.
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THE EFFECTIVE MODULUS

If equations (10) to (14), inclusive, aro to bo appli-
cable in the short-column range, an effective modulus E
must be substituted for Young's madulus E. This substitu-
tion requires thab an effective value of L/j be used to
evaluate « and B in all-equations of this report, where

B 2 E -
of f—

Ag noted in the list of symbols, the formulas used in the
evaluation of o and B differ for tension and compres-—
sion members.

For compression members in the elastic or Bulexr rangs,
E = B. For the short-column range, & < E« In order that
the calculated critical load for a structure shall be con-
sistent with the usual column formulas based upon tests,
it is recommended that E for compression members be de~
termined in the following manner:

l, Solve for the effective slenderness ratio

L/p,/c in the accepted column formula for the mabto-
rial under consideration. '

2. Substitute this value of I/ps/c in the
equation : .

2z ( (17)

kn

The result will be an equation that gives E o8 2
funetion of the stress P/A in the member.

3. If desired, this value of E may be correcte
ed for small differences caused by changes in the
cross—sectional. shape from that wused in the tests on
which the column formula is based; but this correction
ig usually neglected.

If it is inconveniont to solve for IL/p./c in the ac-
cepted column formula, the procedurec outlined in referenco
3 can be used and a curve of ¥ against P/A Ybe drawn,

il



N.A.C.A. Technical Note No. 617 17

The variation of E with stress for tension members
can be established, theoreticeslly, by the use of the
double~modulus theory of bending and of the stress-strain
curve for the material. (See references 4, 5, and 6.)

For such calculations, however, the stress—~strain curve
must be accurately drawn to a sultable scals. In the ab-
sence of a known or calculated variastion of B with stress,
the following approximate method can be used to establish
E for tension members:

l, When the stress is less than the maxinum al-
lowed for a column of the same material, use the
sans values of E for tenslon as for compression at
the sanme stress.

2. When the stress is greater than the maxinunm
allowed for a column of the same material, assune
that E = 0O,

The values of ® for tension members obtalned by
this method will be conservative. Whether or not they are
too conservative 1s a matter to be settled by tests. Cer-—

tainly in the regions of yield point and of maximum ten-
sile strength the flatness of the stress-strain curve will
cause E to approach zero. Because the maximum stress
allowed in columns is closely associated with the yield
point, this method offers a convenient solution of E for
tension menvers.

Axial load in pounds; T, tension; C, compression

Zero 9940 G 8610 T 9940 C 8610 T 9940 C Zero .
}l\ /l\ 75 7~ AN AN /’\ /;\
y z a b - c a ' -] £
l, 60" | 5 at 50" = 250" L 60" \l
) () = = - B Lo s o
Figure 6.
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PROBLEM

Design a2 continuous memdber of 1025 gteel to carry the
loads shown in figure 6. For simplicity, the same cross
section will be msed in all gpans; even though only three
of the spaneg are under axial compression.

The usual column formulas for 1l025-steel tubes are:
For §< 124,

_ .
P . - 1 (E)
i 36,000 1.172 = \5 (18)

" For

ol
v
'._l
Ny
N

6
276_x 107 @ : : (19)

It is desired that L/p be less than 124, Therefors,
equation (18) is used and, on the assumption that c¢ = 2,
a tube of the following dimensions is selected as a trial
Adesign for compression menbers za, be, and de.

Diameter, 4 . . . . . . . . . 1,625 in,

Wall thickness, t® . . « . . 0.065 in.
Area, &4 . . . . . . « . . . . 0.3186 8qg. in.
doment of inertia, I ... . . . 0.,09707 in,*

According to the problem, this tube is used as a continuw
ous member from y to .f (fig. 6). :

In order to check the stability of the tube selected
in the trial design, the critical buckling load will be
calculated and compared with the loads given in figure 6.
It 1s assumed thatthe axial load in the tension spans is
always 8610/9940 or 0.866 times the axial load in the con=
pression spans. This assumption conforms to the condition
that the forces in all nembers increasc in the same ratio
as the load on the structure.

Both the dimensions and loading of the nember shown

ik,

t
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series stability factor is given by equation (15) with the
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gure 6 are symmetricel about span be. It ig therc—
convenient %o determine the critical buckling load

e of the series criterion for stadbility. Inagine the
external moment to be applied at joint ©b. Then the

sunnation signs omitted. If the symmetry about span Dbe

ig co

where

In th

¥ an

buckl

ngidered, the series stability factor becomes
2
(Spe Cpe)
r = 3 -—-(20)
(Sbc * S'cd)
. _ S"cd. _
cd ~ ‘s
2 de
1 -0¢4 g + st
cd de
1
St _ S de -
de ~ 'Su
1 G2 ot : =
- de g + gn
de ef . ) o

e equation for S'z, 1t is assumed that the ends at

d £ ars pinned.

The detailed procedure of calculating the critical
ing load is as follows:

le Agsume & series of values for the axial load
in one of the.members. In order that reasonable
loads will be assumed, & compression nember should
always be selected and the axial loads for this nenw-
ber compubted from the column fornmula using a series
of values of c. In this problen, comnpression nenber
?c )1s selected and the column fornula is equation

18

2. For each assuned axlal load in the selscted
nenber, calculate the corresponding axlal load in ev-
ery other nenber. In this problem the axial load in
all comnpression members is the same and the axial
load in the tension members is 0,866 times the axial
load in the compression menbers.

3s For_each load in each of the nenbers, calcu-~
late P/A, E, and (L/j) ee. In this problem, E
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is obtained from equations (17) and (18), as previ-
ously ountlined, or

26000 i—.%_

L
2 1,172

E - -
' ™

Bl
A

4, For each load in each of-the nembers, deter-
nine the value of the iternms required to evaluats equa-
tion (20), ueing tables I and II.

5. The assumed load that gives r =1 1is the
critical buckling load.

The resultw of-this procedure. as applied to the prob-

lem of figure 6 are given in table III. The values of ¢

in the first column of table III are given for reference
only. As stated in paragraph 1 of the foregoing procedure,
these values were assumed so that a series of reasonable
valueg for the.axial load P in the compression member bec
could be obtained. In the last column of _table III are
gliven the values of . r corresponding to the assumed val-
ues of ce It will be noted that, ag the value of ¢ in-
creages from l.4 to 2.6, the value of r increases from
0.133 to 1.63. If the data of table III are plotted in
curve form, it is found that when "r = 1 _the lowesgt crit-
ical buckling loads for the trial design are

za, be, and de . . . 10,260 compression

e2b and ed . . . . . 8,890 tension
These critical loads arse greater thaﬁ the loads to which
the respoctive members ors subjected. (See fip. 6.) The

tube selected for the trial design 1s therefore stable and
the margin of safety for the system is

[lQEéQ - 1] - [gggg ~1] = 0.03
9940 8610 . 4

This margin of—safety is obtained regardless of which mem-
ber is used for its calculation. The reason for a single
margin of safety for the whole ‘system is that, when the
critical load is reached, all members deflect. Some mem—
bers deflect more than others,.however, with the result
that ultimate fallure is concentrated in one or more mem—
berge.

Al
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) It will be noted in table III that, as the loads P
increase, the stability factor = increasses to a valuse
greater than 1, then falls to a value less than 1, and fi-
nally again rises to a value greater than 1., The reason

for this result is that, theoretically, more than one tyve
of instability is possible. For sach type of instability
there 1s a corresponding critical load. In design, however,
the lowest critical load is the only one of interest.
Therefore, when the stability of the trial design is checked,
.the lowest critical load should be calculated and compared
with the loads given in the problem.

It will be further nobted in table III that, between

¢ = k44 and 1.5, the value of S'de changesg from posi- )

tive to negative. According to the stiffness criterion
for stability, this change of sign means that members de
and ef, considered alone, have changed from stable to
unstable. It is also noted that St',q changes from posi-

tive to negative between ¢ = 2,6 and 2.7, which neans
that members cd, de, ‘and ef, congidered alone, have
changed from stable to unstable but at a much higher load.
4s previously discussed, the change from stable to unsta~
ble for all members occurs between ¢ = 2.5 and 2.6 where
r = 1. : :

Many short cuts can be made in the solution of spe—
clal problems. Much can also be sald concerning the ap-
plication of the method to the best advantage in a given
problem. These points, as well as other points relating
to the practical application of the method, are beyond the
scope of this report. ' '

Langley Memorial Aeronautical Laboratory, .
National Advisory Committee for Aeronautics,
Langley Field, Va., September 1, 1937,
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TABLE I

Functions for Compression Members of Constant Cross Section

L _s*_ S s &
el > | ® | ® | 2 | @
J eff L L
0 0.5000 0.7500 1.000 0.2500 0.2500
o1 .5002 .7495 .9997 .2502 . 2501
.2 .5010 . 7480 .9987 . 2510 .2503
.3 .5023 . 7455 .9970 .2523 . 2508
.4 .5040 . 7420 .9947 .2541 .2513
.5 .5063 L7374 .9916 .2564 .2521
.6 .5092 L7318 .9879 .2593 . 2530
.7 .5126 7251 .9836 .2627 .2542
.8 .5166 L7174 .9785 . 2668 . 2555
.9 .5211 .7085 .9727 .2716 .2570
1.0 .5264 .6985 .9662 L2771 . 2587
1.1 .5323 .6873 .9590 .2833 . 2606
1.2 .5389 L6748 L9511 . 2904 .2627
1.3 .5463 L6611 .9424 .2985 .2651
l.4 5546 .6460 .9329 . 3076 .2677
1.5 .5637 . 6295 .9227 .3178 .2705
1.6 .5739 L6114 .9116 .3293 L2737
1,7 .5851 .5918 .8998 .3423 2771
1.8 .5974 .5704 - .8871 . 3569 .2809
1.9 L6111 L5473 .8735 . 3735 .2850
2.0 .6263 .5221 .8590 .3922 . 2894
2.1 . 6430 .4948 .8436 L4135 | ,2943
2.2 6616 L4651 ,8273 V4377 . 2996
2.3 .6823 L4329 .8099 .4655 . 3053
2.4 .7053 .3978 .7915 .4974 . 31186
2.5 . 7310 . 3595 .7720 5343 .3184
2.6 «7598 .3176 .7513 5773 . 3259
2.7 .7923, .2715 . 7295 .8277 . 3340
2.8 .8291 .2208 L7064 .6874 . 3429
2.9 . 8709 L1647 .6819 . 7585 . 3527
3.0 .9189 ,1021 .6560 . 8444 . 3634
3.1 .9744 .03183 .6287 . 9494 . 3752
m 1.000 0 .6169 1,000 . 3805
3.2 1.039 -. 04765 .5997 1.080 .3883
33 1,115 -.1385 .5691 1,243 4027
34 14206 ~.2436 .5366 1,454 ,4186
3.5 1.316 —-.3670 .5021 1,731 4364
3.6 1.451 ~.5147 4655 2.1086 4562
Be7? 1,622 -.6953 4265 2.630 .4784
3.8 1.843 -.9227 . 3850 3.397 <5035




NIA.G'A.

Technical Note No. 617

TABLE I (cont.)
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Functions for Compression Members of Constant Cross Section

gh S §2 o2
L ———= = 2 =8
(3 ¥ &) | &) ° (%)
I e L L L
3.9 2,140 -1,220 0.3407 4.582 0.5317
4,0 2,560 -1.629 ¢ 2933 6.556 .5639
4,1 B.197 -2,235 2424 10,22 .6007
4,2 4,271 ~3.237 .1878 18,24 . 6430
4,3 64461 -5.246 .1287 41,75 L6919
4,31 6.812 -5.566 .1226 46,41 .6972
4,32 7.204 -5.922 1164 51,89 .7026
4,33 7,643 ~6.,322 .1101 58.42 .7081
4,34 8,140 -6.,773 .1038 66,26 . 7137
4,35 8.706 —~7.287 .09742 75.79 7194
4,36 9,357 ~7.877 .09100 87.55 L7251
4,37 | 10,11 ~8.562 .08453 | 102.3 . 7310
4.38 | 11,00 -9,368 .07801 121.1 7369
4,39 12.07 -10.33 .07143 | 145.,6 . 7429
4,40 13,36 -11.50 .06480 178,4 . 7491
4,41 | 14,96 -12.94 .05811 223.7 .7553
4,42 | 16,99 ~-14.78 .05136 288,7 . 7616
4,43 | 19.87 -17.19 .04455 386.9 .7681
4,44 | 23,35 ~20.52 . 03769 545.3 « 7746
4,45 28,73 -25, 36 03077 825.4 L7813
4.46 37,433 -33,11 .02378 | 1393.0 ¢ 7880
4,47 | 53,27 -47,48 .01674 | 2838.0 . 7949
4,48 | 93,00 -83,27 .009629(-8648.0 .8019
4,49 | 365,8 -329.0 .002459{23380,0 .8090
4,50 +~188,7 170.5 ~.004788[35600.0 .81I63
4,51 | =75,17 68,20 -.01207 | 5650.0 .8237
4,52 | -46,90 42,74 ~,01944 | 2200.0 .8312
4,53 | -34,08 3l.19 ~.02687 | 1162.0 .8388
4,54 | -26,77 24,60 -,03437 | 716.6 . 8466
4,55 | =22,04 20,33 ~,04194 | 485,8 .8545
4,56 | -18.,73 17,35 —~.04958 350.9 . 8625
4,57 | »16,29 15,14 —-.05729 265.3 . 8707
4,58 | -14,41 13,44 —~.06507 207.6 . 8790
4,59 | ~12,92 12,10 ~.,07293 | 166,9 .8875
~4460 | =11.,71 11,00 -.08086 137,1- .8961
4,61 [ «10.,70 10.09 -,08887 | 114.,6 . 9049
4,62 | =9.861 9,330 -~.09695 97,23 .9139
4,63 | =-9,140 8,676 ~,1051 83,55 .9230
4,64 | ~8.518 8.112 ~.1134 72.56 .9323
4,65 | =7,976 7.619 -.1217 63.62 .9418
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TABLE I (cont.)

Functions for Compreésion Members of Constant Cross Section

ST S e
=TT = =2
2 . () () c® &)
3l L/ v L N
4.66 ~7.,499 7.184 ~0.1301 56.23 0.9515
4,67 -7.076 6.799 ~.1388 50.07 .9613
4,68 -6.698 6.454 ~.1471 44,86 L9713
4.69 -6.359 6.144 -.1558 40.44 .9816
4.70 -6.053 5.864 ~.1645 36.64 .9920
4.8 -4,093 4,052  -.2572 16.75 1.108
4,9 -3.102 %.110 ~.3607 9.622 1.252°
5.0 ~2.507 2.521 —.4772 6.283 1.431
5.1 ~2.112 2.110 ~.6099 4,459 1.659
5.2 ~-1.833 1.799 -.7629 3.358 1.954
5.3 -1.626 1.550 -.9422 2.645 2,348
5.4 ~1.470 1.341 -1.156 2.160 2.888
5.5 ~1,348 1.159 -1.418 1.817 Z.655
5.6 -1.253 . 9949 ~-1.748 1.569 4,795
5,7 -1,177 .8426 -2.180 1.386 6.591
5.8 -1,119 .6977 -2,778 1.251 9,653
5.9 ~-1.073 .5566 ~3.668 1.152 | 15,49
6.0 -1.040 L4163 ~5,159 1.081 | 28.77
6.1 -1.017 .2742 -8.234 1.033 | 70.05
6.2 ~1.003 .1275 |-18.59 1.007 | 348.0
2 -1.000 0 - 1.000 o
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TABLE II

Functions for Tension Members of Constant Cross Section
St s s® ¢2
G—) ¢ E /EI c® (EL)®
2 | & %)
0. 0.5000 0,7500 1,000 0.2500 0.2500
.1 .4998 . 7505 1,000 .2498 .2499
.2 .4990 .7520 1,001 . 2490 . 2497
.3 .4978 . 7545 1,003 .2478 .2493
.4 «4960 . 7580 1,005 « 2460 « 2487
.5 .4938 . 7624 1.008 . 2439 . 2479
.6 4912 .7678 1,012 2412 . 2470
o7 «+ 4881 . 7742 1,016 2382 « 2460
«8 « 4845 .7814 1,02t « 2348 « 2448
«9 + 4806 » 7896 1,027 . 2310 . 2435
1,0 4762 .7986 1,033 . 2268 « 2420
1,1 .4716 . 8085 1,040 . 2224 . 2404
l.2 . 4665 .8192 1,047 « 2177 « 2386
1.3 <4612 . 8307 1.058 2127 <2368
1.4 <4556 . 8429 1,064 « 2075 « 2348
1,5 « 4437 . 8559 1,073 « 2022 « 2328
1.6 + 4436 .8696 1,083 «1968 . 23086
1,7 «4373 « 8839 1,093 «1912 . 2284
1,8 + 4308 .8989 1.104 +1856 2261
1.9 4242 « 9144 1,115 «1799 2237
2,0 4174 « 9306 1.127 1742 + 2213
2,1 «4105 . 9472 1,139 «1685 «2188
242 «40386 .« 2644 1,152 +1629 « 2162
2e3 « 3966 .9820 1,165 ,1573 .2136
244 « 3896 1,000 1,179 «1518 «2110
245 » 3825 1,019 1,193 $1463 « 2084
246 . 3755 1,038 1.208 +1410 . 2057
2,7 + 3685 1,057 1,223 .1358 + 2030
2.8 e 3615 1,076 1,238 « 1307 « 2004
2.9 « 3546 1,096 1,254 .1257 1977
3,0 o 3477 14117 1,270 « 1209 »1950
Bl « 3409 1,137 1,287 L1162 .1924
Be2 « 2341 1,158 1,304 « 1117 21897
3e3 e 3275 1,179 1,321 «1073 «1871
3.4 . 3210 1,200 1,338 .1030 .1845
Be5 . 3146 1,222 1,356 .09895 .1820
346 « 3083 1,244 1,374 «0N8502 . 1794
3.7 « 2021 1,265 1,393 09124 « 1769
348 . 2960 1,288 1,411 .08761 1745
3e9 « 2900 1.210 1.430 .08412 « 1720
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Tension Members of Constant Cross Section

< L ) o s s . 52 ¢?

; (Z) (ED) EL)°
eff L L L
4.0 | 0.2842 1.332 1.449 0.08078 0.1897
5.0 . 2231 1.562 1.5852 .05435 .1483
6,0 .1940 1.800 1,870 .03785 L1317
7.0 . 1645 2.042 2,098 .02707 .l192
8,0 L1421 2,286 2,333 .02019 ,1099
940 1247 2,531 2,571 .01556 .1028
10,0 1130 2,778 2,812 ,01232 09747
11,0 09996 3,025 2,056 .009993 .09329
12,0 09090 3,273 3,300 .008262 .08997
13,0 .08333 3.521 3.545 .006944 .08728
14,0 .07692 3,769 3,792 . 005917 ,08507
15,0 07143 4,018 4,038 .005102 .08321
16.0 . 03667 4,267 4,205 004444 .08163
17,0 . 06250 4,516 4,533 . 003906 .08C28
18,0 .058e82 4,765 4,781 . 003460 .07910
19,0 .05556 5,014 5,029 . 003086 .07807
20,0 .05263 5.263 5,278 . 002770 .07716
25,0 204167 64510 6,522 ,001736 07384
30,0 ,03448 7.759 7.768 .001189 L07175
55,0 .02941 9,007 9,015 .0008651 .07031
40,0 .02564 | 10,26 10,26 . 0006575 .06925
45,0 .02273 11,51 11,51 . 0005165 .06845
5040 . 02041 12,76 12.76 .0004165 06782




TABLE III

Calculated Results for Solution of PI‘OblE:]; -

lvconvnﬂ

*ON 830§ TeOjuUyoe]

419

L=
i Members be and de Member cd
E - L P _ L
o P A E ('j)eff P A e : (J )Bff
(1) | (1ba/sqe Ln.) | (1by/8qy in.) (1) | (Abefsqn in.) | (1byfsqy in.)
1.4| 9280 29130 17.30 x 10° 3.72 | &oko 25230 23.43 x 108 2.97
1.2 9430 29590 16.39 3.85 | 8170 25620 22.98 3.03
1.6| 9550 29330 15.59 3.97 | 8270 25970 22.52 3.08
1.7} 9670 30340 14,84 1,10 sggg 26270 22.09 3.12
1.8| 9770 30660 14,16 Y.22 | 8l 26550 21.69 3.17
1.9| 9860 30940 13.52 u.aﬁ 8540 26790 21.%2 3.21
2.0 9940 31190 12.98 L. 8610 27010 20.99 3.25
2.1 10010 31420 1244 L.55 | 8670 27210 20.68 3429
2.2 10080 31630 11.96 4.66 | 8730 27390 20.38 ’ 3.32
2.3 | 10140 31820 11.49 u.7g 8780 27560 20.12 3.35
2.4 10190 31990 11.10 4,86 | 8820 27700 19.89 5.38
2.5| 102 32150 10.71 4.96 | BETO 27840 19.63 3.4
246 10290 32300 10.34 5.06 | 8910 27970 19.41 R
2.7 10340 F2Lho 9.99 5.16 | B9s0 28090 19.21 - 3.46
2.8 | 10380 30570 9,66 5.26 | 8390 28210 18.99 3.49
2.9 10410 %2680 9.38 5.33 9020 28300 18.85 . 3.51
3.0| 10450 32790 9.10 F.ul4 | 9p%0 28400 18.66 3.53

A

o _
ﬁj\cﬁzéwi_ﬁ‘or member ef, P = 0, £ =0, E =28 x 10° 1b. per sq. in., ('%‘) = 0,
' - —_ > £f
[s%f=3aqrxuﬁ1mfm,F] °

8g




TABLE III (Cont'd.)

Calculated Results for Solution of %E?blem

s |

*ON ©40N TsBOoTuUY®el 'V'0°'V'N

E Member be Member cd Member de
a3 a - o’ ' ¥
She $%pe @ e a Sﬂ-cd. 3 S—"Eda e cd i
c C cd G de
(1b.-in.) {(12- ind) (1bp-ing) ‘1b.-in.) | (1b.~in,)|(1b.~in,)

1.4 | 1.hok-X 104 .45 X 10%|0,1224|5.07 X 10*| 2.783| -2.49 X 10%| 2643 51010 | 0.133
1.5 | 1.155 52 .1197]5.01 3.989 | -3.11 ~32.69| 50100 .138
1.6 .930 3.07 L1174 4.95 5.96l | ~k4.56 -2l76 49200 148
1.7 .99 .99 1151 | k.90 10.22 | ~F.4h -%189 48320 .163
1.8 gl 4,94 .11301{4.85 22.94 |-10.01 ~7833 Y7460 181
1.9 .289 4. 88 J111214,80 - K8 Up |~16.59 ~10340 L6560 | .200
2.0 .095 4.92 1096 14,76 [545.3  |-51.71 -13140 45680 .226
2.1 | -.101 4,99 1077 (472 485.8 49.12 ~16150 1700 .261
2.2 | -.302 5.13 L1064 {4,568 56.2% | 16.68 ~19530 Phso | .31k
e.g- ~.512 5.3% L1051 [L4.65 po.72 | 10.25 -22020 42470 .383
2. ~.688 5.54 L1040 4,62 12.47 | 7.51 -26050 40700 ugh
2.5 | -.896 5.88 1026 |4.58 7.619| 5.73 ~31210 37540 .720
2.6 |-1.118 6.33 L1014 |4 .56 5.189 | Y4.57 ~37610 30870 | 1.63
2.7 |-1.361 6.91 1006 |4, 53 3.798 ¢ 3.73 ~L46050 - -8750 | 1.38
2.8 '[-1.633 7.71 .099Y (4,50 2.9%30 | 3.095 -58070 80560 187
2.9 |[=1.911 8.69 L0986 [4. 2.40p | 2.6%3 ~74590 59480 .533
3,0 |~2.227 9.96 0978 (.45 2.023 [ 2.239 102200 53820 | 1.00
{ ?

. Ce L Fiiny 3 R0 T
Note.~ For member of, P =0, 5=0, F =2 X 10° 1b. per sq. in., (%)efi‘ -0,

S. = 3.397 X 10° 1butn,
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